

CONSUMPTION OF PREBIOTIC SOURCES SIGNIFICANTLY AFFECTS CHILDREN HEIGHT IN A STUNTING LOCUS VILLAGE IN BOGOR REGENCY INDONESIA

Konsumsi Sumber Prebiotik Signifikan Berpengaruh terhadap Tinggi Badan Anak di Desa Lokus Stunting Kabupaten Bogor Indonesia

Nadiyah¹, Intan Permatasari¹, Lintang Purwara Dewanti¹, Jeallyza Muthia Azra¹, Putri Ronitawati²

¹Department of Nutrition Science, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta

²Dietitian Department, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta

*e-mail: nadiyah@esaunggul.ac.id

Submitted : 18 Desember 2024, revised : 1 Januari 2025, approved: 18 Juni 2025

ABSTRACT

Stunting is a condition of growth failure in children that occurs due to chronic nutrient deficiencies for a long time, especially during the first 1000 days of life. Children are classified as stunted if the length/height z-score-for-age is <-2 SD. Stunting can occur due to poor gastrointestinal conditions. Prebiotics and probiotics play an important role in helping to maintain gastrointestinal health. The purpose of this study was to analyze the relationship between the consumption of prebiotic and probiotic food sources and the z-score of height/length for age. This cross-sectional study included 100 children aged 6-59 months in the stunting locus village of Bogor Regency. Height/length data were obtained using a stadiometer and infant to meter. Assessment of food consumption of prebiotic and probiotic sources was conducted through interviews using the Semi Quantitative-Food Frequency Questionnaire form. Bivariate test used Pearson correlation test and multivariate test used multiple linear regression test. The data showed that 48% of children were stunted, and 52% were normal. Bivariate test showed correlations of food consumption of prebiotic sources ($r = 0.274$, $p=0.006$) and probiotics ($r=0.264$, $p=0.008$) with height/length z-score. Multivariate test results showed that consumption of prebiotic sources influenced length/height z-score for age ($\beta=0.007$, 95%CI: 0.002-0.011, $p=0.003$). Consumption of prebiotic food sources in children can improve the z-score of height-for-age.

Keywords: consumption, height, probiotics, prebiotics, stunting

ABSTRAK

Stunting merupakan kondisi gagal tumbuh pada anak yang terjadi akibat kekurangan zat gizi kronik dalam waktu yang lama terutama pada masa 1000 Hari Pertama Kehidupan. Anak tergolong stunting apabila nilai z-score panjang/tinggi badan menurut umur <-2 SD. Stunting dapat terjadi akibat kondisi saluran cerna yang kurang baik. Prebiotik dan probiotik berperan penting dalam membantu menjaga kesehatan saluran cerna. Tujuan dari penelitian ini adalah untuk menganalisis hubungan konsumsi sumber pangan prebiotik dan probiotik dengan nilai z-score tinggi/panjang badan menurut umur. Metode penelitian ini adalah observasional dengan desain studi cross sectional. Subjek penelitian terdiri dari 100 balita

usia 6-59 bulan di desa lokus stunting Kabupaten Bogor. Data tinggi/panjang badan didapat menggunakan alat ukur stadiometer dan infant to meter. Penilaian konsumsi pangan sumber prebiotik dan probiotik dilakukan melalui wawancara menggunakan formulir SQ-FFQ. Uji bivariat menggunakan uji korelasi pearson dan uji multivariat menggunakan uji regresi linier berganda. Data penelitian menunjukkan terdapat 48% balita stunting, dan 52% normal. Uji bivariat menunjukkan adanya hubungan konsumsi pangan sumber prebiotik ($r = 0.274$, $p=0.006$) dan probiotik ($r=0.264$, $p=0.008$) dengan nilai z-score tinggi/panjang badan. Hasil uji multivariat menunjukkan konsumsi sumber prebiotik mempengaruhi z-score panjang/tinggi badan menurut umur ($\beta=0.007$, 95%CI:0.002-0.011, $p=0.003$). Konsumsi pangan sumber prebiotik pada balita dapat memperbaiki z-score tinggi badan menurut umur.

Kata kunci: konsumsi, tinggi badan, probiotik, prebiotik, stunting

INTRODUCTION

The global stunting population in 2022 reached 148.1 million. Two out of five stunted children live in South Asia, while three out of five live in Africa. By 2030, the number of stunted children is targeted to reach only 13.5%, but in fact from 2012 to 2022 the reduction in stunting in the world was only about 1.65% per year. If this trend continues, then in 2030 around 128.5 million children (19.5%) will still be stunted.¹

Basic Health Research data showed that the number of stunting in Indonesia in 2013 was 37.2%, decreased to 30.8% in 2018.² The results of the Indonesian Nutrition Status Survey (SSGI) also showed a decrease in the stunting rate from 27.7% in 2019 to 21.6% in 2023. The 2022 SSGI data recorded that 18.7% of children in Bogor Regency were still stunted. The current reduction in stunting is still far from the target of the 2020-2024 National Medium-Term Development Plan, where the number of stunted children in Indonesia is only 14%.³

Stunted children experience a syndrome in the small intestine caused by exposure to fecal-oral contamination. This condition causes pathogenic microbiota to dominate in the gastrointestinal tract, so that nutrients obtained from food cannot be absorbed properly.⁴ The imbalance of microbiota in the gastrointestinal tract disrupts the process of food digestion. Although food intake is sufficient, growth disorders can still occur because the nutrients in the food cannot be absorbed properly.

Prebiotics and probiotics have been proven to maintain gastrointestinal health. In addition, prebiotics and probiotics have also been widely researched as one of the methods in handling and preventing stunting.⁵ Proper feeding is important for children to maintain and improve the condition of the microbiota in the

gastrointestinal tract so that nutrient absorption can take place optimally. In addition, gastrointestinal health is important for maintaining children's immunity.⁶

Prebiotics are compounds that can stimulate the growth and activity of several types of non-pathogenic microorganisms in the gastrointestinal tract so that they are beneficial to health.⁷ Prebiotics function in increasing the growth of probiotic bacteria in the gastrointestinal tract. Probiotics are types of bacteria that play a good role in gastrointestinal health. Probiotics can be added to food to have a beneficial effect on human health.⁸

Consumption of foods containing prebiotics and probiotics has been shown to show significant results in children's height growth.⁶ Studies in developing countries have been conducted to examine the effects of probiotics on children's weight and height growth. The results show that probiotic foods are beneficial for weight and height growth in undernourished children. Supplementation or feeding of local food sources containing probiotics is suggested as an effective intervention for child growth.⁹

Feeding local food-based prebiotic sources in Indonesia has been conducted and has been shown to improve height for age z-score (HAZ) of stunted children with a mean of 0.08 ± 0.16 . The local food was divided into two food formulas with the composition of kepok banana, fern leaves, garlic, eggs, milk flour, and salt. Prebiotic food sources have a positive effect on stunted children because they can increase non-pathogenic bacteria and prevent environmental enteric dysfunction (EED) which is commonly experienced by stunted children. EED causes metabolic demands to increase and nutrient absorption to be inhibited, affecting children's growth.¹⁰

Food sources of prebiotics in Indonesia are easily found such as shallots, garlic, tomatoes, and bananas.¹¹ Tubers and fruits are one of the foods that contain prebiotics, for example sweet potatoes, taro, cassava, and apples.¹² Supplementary feeding for stunted children with additional probiotic sources from local foods, namely curd, has been shown to have a better effect than without curd. Probiotics are non-pathogenic microbiota that are beneficial to health. Non-pathogenic microbiota that dominate in the gastrointestinal tract can help prevent stunting because they can increase the body's immunity and help nutrients to be absorbed optimally (6). Probiotics can be found in various foods such as yoghurt, cheese and chocolate. One of the local foods rich in probiotics is tempeh.¹³

Based on previous studies, the researcher aimed to analyze the correlation between food consumption of prebiotic and probiotic sources with height/length-for-age z-score of children. The study was conducted in the stunting focus area (locus), Bogor Regency. The determination of the stunting focal area by the government is based on several indicators, namely the number of stunted children, the prevalence of stunted children, and the poverty rate in the area.¹⁴

METHOD

This study cross-sectional was conducted to describe the correlation between food consumption of prebiotic and probiotic sources with HAZ in the stunting locus area in Bogor Regency. This study was conducted from July 2023 to February 2024. Sampling in this study was conducted using multistage random sampling method.

The number of samples in this study were 100 children aged 6-59 months with inclusion criteria, namely children have lived for at least six months in the stunting locus area, parents are willing to be interviewed during the study, and can communicate well. Exclusion criteria in this study were sick, did not follow the research until the end, or children who moved domicile.

Data collected included sample characteristics, namely age and gender. Height data taken using a stadiometer, and body length data determined using an infant to meter, and food consumption of prebiotic and probiotic sources (grams per day) were recorded during the last month through interviews with mothers or caregivers of children using Semi-quantitative Food Frequency Questionnaire (SQ-FFQ) sheets and food photo books. The list of food ingredients containing prebiotics and probiotics was taken from previous journals, then compiled into an SQ-FFQ questionnaire. Validation of the questionnaire was conducted prior to field work at the research site.

Determination of the category of stunting or non-stunting children is taken from the Regulation of the Minister of Health of the Republic of Indonesia Number 2 of 2020 concerning Child Anthropometric Standards.¹⁵ The data collected were then analyzed using statistical software. The analytical tests used in this study were Pearson correlation test for bivariate analysis and multiple linear regression test as multivariate analysis. The significance level was set at p-value <0.05. This research

has received ethical approval from the Research Ethics Commission of Universitas Esa Unggul.

RESULTS

Table 1 showed that 64% of children were aged 24-59 months, and 36% were aged 6-23 months. Most of them (52%) were boys and 48% were girls. Forty-eight percent of the children were stunted, and 52% were not stunted. The overall consumption of prebiotic and probiotic food sources in children, in each of normal and stunted children could be seen in Table 2. On average, children consumed 70.8+54.35 grams of prebiotic food sources per day, and 41.7+41.38 grams of probiotic food sources per day in the last month.

Table 1. Characteristics of the sample of children aged 6-59 months in the stunting locus area of Bogor Regency

Characteristics	n (%)
Age (months)	
6-23	36 (36%)
24-59	64 (64%)
Gender	
Female	48 (48%)
Male	52 (52%)
Nutrition status	
Stunting	48 (48%)
Mean \pm SD	-2.65 \pm 0.52 ^a
Min-Max	-3.80 - -2.01 ^a
Normal	52 (52%)
Mean \pm SD	-0.77 \pm 0.93 ^a
Min-Max	-2.00 - 1.57 ^a

^a z-score

Table 2. Consumption of prebiotic and probiotic sources among children under 6-59 months (g/day)

n	Prebiotics		Probiotics		
	Mean \pm SD	Min-Max	Mean \pm SD	Min-Max	
Overall	100	70.8 \pm 54.35	7 - 272	41.7 \pm 41.38	0 - 225
Stunting	48	46.4 \pm 29.05	7 - 122	29.9 \pm 24.42	0 - 103
Normal	52	93.2 \pm 62.33	17 - 272	52.6 \pm 50.20	0 - 225

Based on nutritional status, stunted children consume fewer prebiotic and probiotic food sources than non-stunted children. The average consumption of prebiotic sources or stunted toddlers is 46.4+29.05 grams per day, while normal are 93.2+62.33 grams per day during the last month. Stunted children consumed an average of 29.9+24.42 grams of probiotic sources per day, while normal children consumed an average of 52.6+50.20 grams of probiotic food sources per day.

The results of the Pearson correlation bivariate test showed that there was a significant correlation between consumption of prebiotic sources and HAZ among children aged 6-59 months ($r=0.274$, $p=0.006$). A significant correlation was also found in the consumption of probiotic sources with the HAZ of children aged 6-59 months ($r=0.264$, $p=0.008$). The results of the bivariate analysis are shown in Table 3. Multiple linear regression test results showed that after controlling age, consumption of prebiotic food sources significantly influenced the HAZ of children under 6-59 months. Meanwhile, consumption of probiotic sources did not significantly affect the HAZ of children under five (Table 4).

Table 3. Pearson's correlation test of prebiotic and probiotic source consumption with HAZ of children under five years old

Consumption of sources	<i>r</i>	<i>p</i>
Prebiotics	0.274	0.006
Probiotics	0.264	0.008

Table 4. Multiple linear regression test of independent variables affecting the TB/U z-score of children under 6-59 months after controlling age

Independent Variable	Coefficient (95%CI)	<i>p</i>
Prebiotic sources	0.007 (0.002-0.011)	0.003
Probiotic sources	0.000 (0.000-0.000)	0.113

DISCUSSION

Consumption of prebiotic sources significantly influenced the HAZ of children under five ($p<0.01$) after controlling for age. Prebiotics promote the growth of specific beneficial bacteria in the gut, which can improve the absorption of nutrients and enhance the overall health of the gut microbiome. This, in turn, can support healthy growth and development, particularly in children.

Previous studies have shown that prebiotic consumption can improve calcium absorption and bone health through changes in gut microbiota composition, short-chain fatty acid production, changes in gut pH, biomarker modification, and immune system regulation.¹⁶ Calcium is essential for child growth. Low calcium consumption may result in a higher risk of stunting compared to children who consume sufficient calcium. This is because calcium deficiency can inhibit bone mineralization, leading to stunted growth. Calcium is also an important micronutrient in supporting children's growth and development. An inhibited bone mineralization process causes children to be unable to reach their full height.¹⁷

Prebiotics in the gastrointestinal tract are fermented by intestinal flora that can stimulate non-pathogenic bacteria in the gastrointestinal tract, thus modifying their growth and activity with beneficial effects on health.⁷ Prebiotics are transported to the colon intact, here they are broken down by gut flora and selectively fermented to produce specific secondary metabolites. These metabolites are then absorbed by the intestinal epithelium or carried to the liver via the portal vein and may provide benefits to the body.¹⁸

The specific advantage of prebiotics refers to enhancing the growth of target microorganisms. Upon consumption of certain prebiotics e.g. inulin, fructo-oligosaccharides (FOS), and galacto-oligosaccharides (GOS), they can promote the growth of beneficial flora to compete with other species by protecting or promoting the production of non-pathogenic bacteria that are beneficial to health. In addition, prebiotics are not only beneficial to the digestive system but also to the central nervous, immune, and cardiovascular system.⁸

The direct causes of stunting are dietary intake and infectious diseases. Both factors are influenced by the microbiota of the gastrointestinal tract.⁴ Prebiotics are beneficial in maintaining a healthy gastrointestinal tract by enriching non-pathogenic microbiota and preventing the emergence of pathogenic microbiota.¹⁹ An imbalance in the composition of pathogenic and non-pathogenic microbiota can cause infectious diseases in children. Good immunity can prevent the occurrence of infectious diseases as a contributing factor to stunting.²⁰ Prebiotics help nutrient metabolism run optimally by stimulating the growth of good bacteria such as Bifidobacteria and Lactobacillus. Good nutrient metabolism provides benefits to immunity as a prevention of infectious diseases, and can help nutrients to be

absorbed optimally.²¹ Research using pisang kepok as a source of prebiotics has shown to reduce *E. coli* bacteria in stunted children. The study showed significant results in reducing the number of *E. coli* bacteria in the gut. The use of banana flour shows promising potential in improving gut health.⁵

Probiotic sources can be found in a variety of fermented food stuffs, including asinan.²² Asinan is one of Bogor's local foods. Asinan in Bogor consists of pickled vegetables, pickled fruits, and mixed pickled fruits and vegetables.²³ However, pickles are rarely consumed by children.

Probiotics are beneficial in boosting the immune system and can maintain the balance of the gut microbiota by suppressing the growth of pathogenic bacteria in the digestive system.²⁴ Probiotics inhibit the growth of pathogens in the gut that cause children to develop infectious diseases. One of them that often occurs in children is diarrhea.²⁵ Consumption of probiotics at least 5×10^9 colony forming units (CFUs) daily has been shown to significantly reduce cases of diarrhea in children. *Lactobacillus rhamnosus* and *S. boulardii* are the most appropriate probiotic species in preventing diarrhea in children.²⁶ Probiotics prevent diarrhea by competing with pathogenic microbiota, or by producing bacteriocins such as nisin.²⁷ Diarrhea is one of the causes of stunting as it can interfere with nutrient absorption and elimination.²⁸ Late handling and unbalanced intake when experiencing diarrhea can cause children to experience growth failure.

Consumption of probiotic sources did not significantly affect HAZ in multivariate test after controlling age. Some types of probiotics have difficulty reaching the gut as they can be destroyed by the acid in the stomach.²⁹ Probiotics contain live microorganisms that can confer health benefits when administered in adequate amounts. While probiotics can also improve child growth through modulation of the gut microbiota and immune system, their effects are often strain-specific and may not be as consistent as those of prebiotics.³⁰ Additionally, probiotics are not as effective in promoting the growth of specific beneficial bacteria as prebiotics, which can have a more targeted effect on the gut microbiome. Therefore, increasing probiotic bacteria can be done by consuming prebiotics. Prebiotics are fertilizers for microbes in the gut, causing more good bacteria to grow in the gut.³¹ Meanwhile, the health effects of probiotics are generally considered to be strain-specific.³²

CONCLUSION

Probiotics can also help children grow by modulating the gut microbiota and immune system, although their benefits are generally strain-specific and may not be as consistent as prebiotics. Furthermore, probiotics are less effective in promoting the growth of specific beneficial bacteria than prebiotics, which have a more targeted effect on the gut microbiome. Consuming prebiotics can help to increase probiotic microorganisms. Prebiotics fertilize microbes in the gut, causing more beneficial bacteria to develop. Meanwhile, the health benefits of probiotics are thought to be strain-specific

ACKNOWLEDGMENT

The researchers are grateful to the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for their research grant. Thanks a lot to the Bogor Regency Health Office and volunteers from integrated healthcare centers for their assistance with this research.

REFERENCES

1. UNICEF, WHO, World Bank Group. Levels and Trends in Child Malnutrition. 2022. Available from: <https://data.unicef.org/wp-content/uploads/2023/05/JME-2023-Levels-and-trends-in-child-malnutrition.pdf>. [cited 2023 May 28].
2. Indonesian Ministry of Health. 2018 Basic Health Research. Jakarta: Ministry of Health Directorate of Health Promotion and Community Empowerment. 2023
3. Indonesian Ministry of Health. Indonesia Nutrition Status Survey (SSGI) 2022 Result Material. Available from: <https://promkes.kemkes.go.id/materi-hasil-survei-status-gizi-indonesia-ssgi-2022>
4. Heuven LAJ, Pyle S, Grayling A, Melse-Boonstra A, Eilander A. Gut Microbiota-Targeted Nutritional Interventions Improving Child Growth in Low- and Middle-Income Countries: A Systematic Review. *Curr Dev Nutr.* 2021;1:5(11).
5. Simanjuntak BY, Annisa R, Saputra AI. Literature review: Is gastrointestinal microbiota associated with stunting in children under five? *Amerta Nutrition*;6(1SP):343-51.
6. Philips AG, Mulyanti D. Gastrointestinal Microbiota in Preventing Stunting Problems. *Journal of Health Science Research Innovation.* 2023;1(2):182- 96.

7. Cahyaningtyas FD, Wikandari PR. Review Article: Potential of Fructooligosaccharides and Inulin in Local Foodstuffs as Prebiotic Sources. *UNESA Journal of Chemistry*. 2022;2:97-107.
8. You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, et al. The promotion mechanism of prebiotics for probiotics: A review. *Front Nutr*. 2022;9:1-22.
9. Onubi OJ, Poobalan AS, Dineen B, Marais D, McNeill G. Effects of probiotics on child growth: A systematic review. *J Health Popul Nutr*. 2015;34(8):1-15.
10. Waliyo E, Agusanty SF, Hariyadi D. Local food-based prebiotic formula can improve PB/U z-scores in stunted children. *Aceh Nutrition Journal*. 2020; 5(2):130-9.
11. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. *Foods*. 2019;8(3).
12. Ribeiro JA, dos Santos Pereira E, de Oliveira Raphaelli C, Radünz M, Camargo TM, da Rocha Concenço FIG, et al. Application of prebiotics in apple products and potential health benefits. *J Food Sci Technol*. 2022;59(4):1249.
13. Syngai GG, Gopi R, Bharali R, Dey S, Lakshmanan GMA, Ahmed G. Probiotics - the versatile functional food ingredients. *J Food Sci Technol*. 2016;53(2):921.
14. Ministry of National Development Planning Letter. 2020 Stunting Locus. BAPPENAS. 2020.
15. Permenkes RI. Permenkes No. 2 of 2020 concerning Child Anthropometry Standards [Internet]. 2020. Available from: https://peraturan.bpk.go.id/Home/Detail_s/152505/permekes-no-2-tahun-2020. [cited 2023 May 28].
16. Whisner CM, Castillo LF. Prebiotics, Bone and Mineral Metabolism. *Calcif Tissue Int*. 2018;102(4):443.
17. Marsellinda E, Ferilda S. Relationship between calcium and vitamin D intake in stunted and non-stunted children aged 12-59 months in Sijunjung Regency. *MEDFARM: Journal of Pharmacy and Health*. 2023;12(2):202-8.
18. Precup G, Pocol CB, Teleky BE, Vodnar DC. Awareness, Knowledge, and Interest about Prebiotics-A Study among Romanian Consumers. *Int J Environ Res Public Health*. 2022;19(3).
19. Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. *Gut Microbes*. 2020;11(1):1.

20. Dinh DM, Ramadass B, Kattula D, Sarkar R, Braunstein P, Tai A. Longitudinal Analysis of the Intestinal Microbiota in Persistently Stunted Young Children in South India. *PLoS One*. 2016;11(5):1-17.
21. Thursby E, Juge N. Introduction to the human gut microbiota. *Biochemical Journal*. 2017;474(11):1823.
22. Touret T, Oliveira M, Semedo- Lemsaddek T. Putative Probiotic Lactic Acid Bacteria Isolated from Sauerkraut Fermentations. *PLoS One*. 2018;13(9).
23. Suciani IA, Mela E, Wijonarko G. Strategies for improving Bogor speciality foods. *agriTECH* [Internet]. 2021;41(2):152-60.
24. Carolina MG, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. *Ann Nutr Metab*. 2019;74(2):115-24.
25. Ma T, Shen X, Shi X, Sakandar HA, Quan K, Li Y, et al. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review. *Trends Food Sci Technol*. 2023;138:178-98.
26. Hadiyanto ML, Wahyudi S. Probiotics as prevention of antibiotic-associated diarrhoea in children. *Mirror of the World of Medicine*. 2022;49(4):219-22.
27. Amara AA, Shibli A. Role of Probiotics in health improvement, infection control and disease treatment and management. *Saudi Pharmaceutical Journal*. 2015;23(2):107.
28. Choiroh ZM, Windari EN, Proborini A. The relationship between the frequency and duration of diarrhoea and the incidence of stunting in toddlers aged 24-36 months in Kedungrejo Village, Pakis District. *Journal of Issues in Midwifery*. 2021;4(3):131-41.
29. Dewi EK, Nindya TS. The Relationship of Iron and Zinc Adequacy Levels with the Incidence of Stunting in Toddlers 6- 23 Months. *Amerta Nutrition*. 2017;361-8.
30. Sirajuddin, Rauf S, Nursalim. Iron intake correlates with the incidence of stunting among under-five children in Maros Baru sub-district. *Nutrition Indonesia*. 2020;43(2):109-18.
31. British Dietetic Association. Probiotics and Gut Health. *BDA The Association of UK Dietitians*. 2022.
32. Ji J, Jin W, Liu SJ, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. *MedComm*. 2023;4(6).