Abstract Views
PDF Download
Research Articles

Low Birth Weight Classification With Synthetic Minority Over Sampling Technique Random Forest

, ,
Pages 46 - 56


Low birth weight (LBW) is defined as a condition where the birth weight is less than 2500 grams. Infants born with LBW conditions are more susceptible to disease and have a higher risk of dying at an early age. LBW conditions that are prone to unbalanced data can be classified using the Synthetic Minority Oversampling Technique (SMOTE) random forest method. The analysis was processed on the 2017 Indonesian Demographic and Health Survey (IDHS) data to identify important variables in predicting the incidence of LBW. The results showed that the SMOTE random forest model provided an accuracy value of 79.84%, sensitivity of 30.99%, specificity of 83.6%, and AUC of 62%. Important variables in predicting the incidence of LBW were the number of antenatal care visits, wealth quantile, maternal age at delivery, iron supplementation, marital status, and twins’ birth.

Keywords :

LBW SMOTE random forest

There is no Figure or data content available for this article


  • KC, Anil; BASEL, Prem Lal; SINGH, Sarswoti. Low birth weight and its associated risk factors: Health facility-based case-control study. PloS one. 2020; 15.6: e0234907.
  • UNICEF-WHO; United Nations Children’s Fund, World Health Organization. Low birthweight estimates: Levels and trends 2000–2015. Geneva: World Health Organization; 2019.
  • [BKKBN]. Badan Kependudukan dan Keluarga Berencana Nasional. Jakarta: Survei Demografi dan Kesehatan Indonesia 2017. 2018. Available from: www.sdki.bkkbn.go.id
  • [Kemenkes RI]. Kementerian Kesehatan Republik Indonesia. Jakarta: Situasi Balita Pendek (Stunting) di Indonesia. 2018.
  • Chhea C, Ir P, Sopheab H. Low birth weight of institutional births in Cambonia: Analysis of the demographic and health surveys 2010-2014. PLoS One. 2018; 13(11):1–16.
  • Hassan MM, Mirza T. Comparative Analysis of Machine Learning Algorithms in Diagnosis of Polycystic Ovarian Syndrome. International Journal of Computer Applications. 2020; 175(17):42-53.
  • Yuliati IF, Sihombing PR. Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK J Manajemen, Tek Inform dan Rekayasa Komput. 2021; 20(2):417–426.
  • Johnson,Justin M.; Khoshgoftaar, Taghi M. Survey on deep learning with class imbalance. Journal of Big Data. 2019: 6.1: 1-54.
  • Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches. IEEE Computational Intelligence Magazine. 2018; 13(4):59-76.
  • Parsa, Amir Bahador, et al. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accident Analysis & Prevention, 2020, 136: 105405..
  • Oktriyanto, Rahardja MB, FN DN, Amrullah H, Pujihasvuty R, PN MM. Determinants of Low Birth Weight in Indonesia. Jurnal Kesehatan Masyarakat. 2022; 17(4):583-593.
  • James G, Witten D, Hastie T, Tibshirani R, Taylor J. Springer Texts in Statistics An Introduction to Statistical Learning with Applications in Python. New York: Springer. 2023.
  • Breiman L, Cutler A, Liaw A, & Matthew Wiener. Package ‘randomForest’: Breiman and Cutler's Random Forests for Classification and Regression. 2022; 4.7-1.1. Available from: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
  • Hidayatulloh NGT. Perbandingan Kinerja Random Forest dan Double Random Forest untuk Klasifikasi Status Kemiskinan di Level Kabupaten/Kota [undergraduate thesis]. Bogor: Departemen Statistika, Fakultas MIPA, Institut Pertanian Bogor. 2022.
  • Tonasih, Kumalasary D. Faktor-Faktor Yang Mempengaruhi Kejadian Berat Bayi Lahir Rendah (BBLR) Di Puskesmas Wilayah Kecamatan Harjamukti Kota Cirebon Tahun 2016. Jurnal Riset Kebidanan Indonesia. 2018; 2(1):21-27.
  • Hartiningrum I, Fitriyah N. Bayi berat lahir rendah (BBLR) di Provinsi Jawa Timur tahun 2012-2016. Jurnal Biometrika Dan Kependudukan. 2018 Dec;7(2):97-104.
  • Agustin S, Setiawan BD, Fauzi MA. Klasifikasi Berat Badan Lahir Rendah (BBLR) pada Bayi dengan Metode Learning Vector Quantization (LVQ). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 2019; 3(3):2929-2936.
  • Zaveri A, Paul P, Saha J, Bikash B, Pradip C. Maternal determinants of low birth weight among Indian children Evidence from the National Family Health Survey-4, 2015-16. PLoS ONE. 2020; 15(12).
  • Sohibien GPD, Yuhan RJ. Determinan Kejadian Berat Badan Lahir Rendah (BBLR) di Indonesia. Jurnal Aplikasi Statistika dan Komputasi Statistik. 2019; 11(1):1-14.
  • Barr JJ, Marugg L. Impact of Marriage on Birth Outcomes: Pregnancy Risk Assessment Monitoring System, 2012-2014. Linacre Q. 2019; May;86(2-3):225-230.
  • Patel R, Chauhan S. Risk of low birth weight and exposure to type of cooking fuel in India. International Journal of Pregnancy & Childbirth. 2020; 6(1):8-11
There is no Supplemental content for this article.

How to Cite This

Oktarina, S. D., Wijayanto, H., & Yarah, H. R. . (2023). Low Birth Weight Classification With Synthetic Minority Over Sampling Technique Random Forest. Jurnal Kesehatan Ibu Dan Anak, 17(1), 46–56. https://doi.org/10.29238/kia.v17i1.1802 (Original work published October 31, 2023)

Article Metrics

Download Statistics


Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publishing your paper with Jurnal Kesehatan Ibu dan Anak means that the author or authors retain the copyright in the paper. Jurnal Kesehatan Ibu dan Anak granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by Jurnal Kesehatan Ibu dan Anak in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at the private monetary gain or commercial advantage.

Jurnal Kesehatan Ibu dan Anak provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

Jurnal Kesehatan Ibu dan Anak Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability